employee from 01.01.2018 to 01.01.2025
Volga State University of Water Transport
CSCSTI 37.00
CSCSTI 38.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
Ocean plastic pollution poses a serious environmental threat to both natural ecosystems and human health. An important field of research on this problem is the development of the physical foundations and methods of remote sensing of plastic debris (PD). The plastic in the ocean and inland waters is largely associated with buoyant polyethylene (PE) films, which are expected to be located the water surface. However, everyday observations show that plastic objects, including PE films, are partially or completely submerged in the near-surface water layer, even though the density of these fragments is lower than that of water. This makes detecting plastic pollution using radar methods more challenging than might be expected. This paper is focused on numerical modeling of an initial stage of the dynamics of a buoyant plastic film placed on the water surface when an intense gravity-capillary wave (GCW) approaches the film. The modeling is performed using the open-source software “OpenFOAM”. It has been revealed that for a highly nonlinear GCW with a bulge structure near the wave crest, there is an “overflow” of water over the film with subsequent sinking of its edge. It has also been obtained that a buoyant PE film sank below the water surface rises slower in the presence of GCW than in the “no wave” case. The explanation of the film immersion effect is given based on the hypothesis that an averaged hydrodynamic force directed against the Archimedean force arises in the field of the orbital wave motions of the liquid particles.
Plastic debris in water, polyethylene films, gravity-capillary waves, remote sensing
1. Andrady A. L. Microplastics in the marine environment // Marine Pollution Bulletin. — 2011. — Vol. 62, no. 8. — P. 1596–1605. — https://doi.org/10.1016/j.marpolbul.2011.05.030.
2. Arii M., Koiwa M. and Aoki Yo. Applicability of SAR to Marine Debris Surveillance After the Great East Japan Earthquake // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2014. — Vol. 7, no. 5. — P. 1729–1744. — https://doi.org/10.1109/jstars.2014.2308550.
3. Brown S. A., Xien N., Hann M. R., et al. Investigation of wave-driven hydroelastic interactions using numerical and physical modelling approaches // Applied Ocean Research. — 2022. — Vol. 129. — P. 103363. — https://doi.org/10.1016/j.apor.2022.103363.
4. Cardiff P., Karač A., De Jaeger P., et al. An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. — arXiv, 2018. — https://doi.org/10.48550/ARXIV.1808.10736.
5. Chubarenko I., Esiukova E., Khatmullina L., et al. From macro to micro, from patchy to uniform: Analyzing plastic contamination along and across a sandy tide-less coast // Marine Pollution Bulletin. — 2020. — Vol. 156. — P. 111198. — https://doi.org/10.1016/j.marpolbul.2020.111198.
6. Ciarlet P. G. Mathematical Elasticity. Volume I, Three-Dimensional Elasticity Studies in Mathematics and its Applications. — Amsterdam : Elsevier Science Publishers B.V., 1988. — 451 p. — https://doi.org/10.1007/BF00046568.
7. Cózar A., Echevarría F., González-Gordillo J. I., et al. Plastic debris in the open ocean // Proceedings of the National Academy of Sciences. — 2014. — Vol. 111, no. 28. — P. 10239–10244. — https://doi.org/10.1073/pnas.1314705111.
8. Davaasuren N., Marino A., Boardman C., et al. Detecting Microplastics Pollution in World Oceans Using Sar Remote Sensing // IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. — IEEE, 2018. — P. 938–941. — https://doi.org/10.1109/igarss.2018.8517281.
9. Dean R. G. and Dalrymple R. Water wave mechanics for engineers and scientists. — World Scientific, 1991. — 353 p.
10. Donea J., Huerta A., Ponthot J.-Ph., et al. Arbitrary Lagrangian-Eulerian Methods // Encyclopedia of Computational Mechanics. — Wiley, 2004. — P. 413–437. — https://doi.org/10.1002/0470091355.ecm009.
11. Duncan J. H. Spilling breakers // Annual Review of Fluid Mechanics. — 2001. — Vol. 33, no. 1. — P. 519–547. — https://doi.org/10.1146/annurev.fluid.33.1.519.
12. Ermakov S. A., Dobrokhotov V. A. and Sergievskaya I. A. Laboratory studies of radar scattering from surface waves propagating over a vertical plastic film submerged in water // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2024. — Vol. 21, no. 6. — P. 320–330. — https://doi.org/10.21046/2070-7401-2024-21-6-320-330. — (In Russian).
13. Ermakov S. A. and Khazanov G. E. Resonance damping of gravity-capillary waves on water covered with a visco-elastic film of finite thickness: A reappraisal // Physics of Fluids. — 2022. — Vol. 34, no. 9. — https://doi.org/10.1063/5.0103110.
14. Ermakov S. A., Ruvinsky K. D., Salashin S. G., et al. Experimental investigation of the generation of capillary-gravity ripples by strongly nonlinear waves on the surface of a deep fluid // Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics. — 1986. — Vol. 22. — P. 835.
15. Ermakov S. A., Sergievskaya I. A., Dobrokhotov V. A., et al. Wave Tank Study of Steep Gravity-Capillary Waves and Their Role in Ka-Band Radar Backscatter // IEEE Transactions on Geoscience and Remote Sensing. — 2022. — Vol. 60. — P. 1–12. — https://doi.org/10.1109/tgrs.2021.3086627.
16. Evans M. C. and Ruf C. S. Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar // IEEE Transactions on Geoscience and Remote Sensing. — 2022. — Vol. 60. — P. 1–9. — https://doi.org/10.1109/tgrs.2021.3081691.
17. Forsberg P. L., Sous D., Stocchino A., et al. Behaviour of plastic litter in nearshore waters: First insights from wind and wave laboratory experiments // Marine Pollution Bulletin. — 2020. — Vol. 153. — P. 111023. — https://doi.org/10.1016/j.marpolbul.2020.111023.
18. Harrison J. P., Hoellein T. J., Sapp M., et al. Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments // Freshwater Microplastics. Vol. 58. — Cham, Switzerland : Springer International Publishing, 2018. — P. 181–201. — https://doi.org/10.1007/978-3-319-61615-5_9.
19. Higuera P., Lara J. L. and Losada I. J. Realistic wave generation and active wave absorption for Navier-Stokes models // Coastal Engineering. — 2013. — Vol. 71. — P. 102–118. — https://doi.org/10.1016/j.coastaleng.2012.07.002.
20. Hron J. and Turek S. A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics // Fluid-Structure Interaction. — Springer Berlin Heidelberg, 2006. — P. 146–170. — https://doi.org/10.1007/3-540-34596-5_7.
21. Hu C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and potentials // Remote Sensing of Environment. — 2021. — Vol. 259. — P. 112414. — https://doi.org/10.1016/j.rse.2021.112414.
22. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis. — Department of Mechanical Engineering Imperial College of Science, Technology, Medicine, 1996.
23. Khazanov G. E. and Ermakov S. A. Numerical Modeling of a Floating Polyethylene Film Dynamics in the Field of Surface Waves // Fundamental and Applied Hydrophysics. — 2025. — Vol. 18, no. 2. — P. 68–82. — https://doi.org/10.59887/2073-6673.2025.18(2)-5. — (In Russian).
24. Kukulka T., Proskurowski G., Moret-Ferguson S., et al. The effect of wind mixing on the vertical distribution of buoyant plastic debris // Geophysical Research Letters. — 2012. — Vol. 39, no. 7. — P. 1–6. — https://doi.org/10.1029/2012gl051116.
25. Landau L. D. and Lifshitz E. M. Theoretical Physics: Vol. I. Mechanics. — Nauka, 1988. — 216 p. — (In Russian).
26. Longuet-Higgins M. S. Parasitic capillary waves: a direct calculation // Journal of Fluid Mechanics. — 1995. — Vol. 301. — P. 79–107. — https://doi.org/10.1017/s0022112095003818.
27. Phillips O. M. The dynamics of the upper ocean. — 2nd. — Cambridge : Cambridge University Press, 1977. — 336 p.
28. Qiao H. and Duncan J. Gentle spilling breakers: crest flow-field evolution // Journal of Fluid Mechanics. — 2001. — Vol. 439. — P. 57–85. — https://doi.org/10.1017/s0022112001004207.
29. Rapp R. J. and Melville W. K. Laboratory measurements of deep-water breaking waves // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. — 1990. — Vol. 331, no. 1622. — P. 735–800. — https://doi.org/10.1098/rsta.1990.0098.
30. Sapozhnikov P. V., Kalinina O. Y. and Vostokov S. V. Microplaston artificial polymers in the Miass River and Lake Turgoyak (Southern Urals, Russia) in the early stages of colonisation // South of Russia: ecology, development. — 2023. — Vol. 18, no. 3. — P. 133–143. — https://doi.org/10.18470/1992-1098-2023-3-133-143. — (In Russian).
31. Simpson M. D., Marino A., Maagt P. de, et al. Monitoring of Plastic Islands in River Environment Using Sentinel-1 SAR Data // Remote Sensing. — 2022. — Vol. 14, no. 18. — P. 4473. — https://doi.org/10.3390/rs14184473.
32. Simpson M. D., Marino A., Maagt P. de, et al. Investigating the Backscatter of Marine Plastic Litter Using a C- and X-Band Ground Radar, during a Measurement Campaign in Deltares // Remote Sensing. — 2023. — Vol. 15, no. 6. — P. 1654. — https://doi.org/10.3390/rs15061654.
33. Smith I. L., Stanton T. and Law A. Plastic habitats: Algal biofilms on photic and aphotic plastics // Journal of Hazardous Materials Letters. — 2021. — Vol. 2. — P. 100038. — https://doi.org/10.1016/j.hazl.2021.100038.
34. Suaria G., Cappa P., Perold V., et al. Abundance and composition of small floating plastics in the eastern and southern sectors of the Atlantic Ocean // Marine Pollution Bulletin. — 2023. — Vol. 193. — P. 115109. — https://doi.org/10.1016/j.marpolbul.2023.115109.
35. Sun Y., Bakker T., Ruf C., et al. Effects of microplastics and surfactants on surface roughness of water waves // Scientific Reports. — 2023. — Vol. 13, no. 1. — https://doi.org/10.1038/s41598-023-29088-9.
36. Tezduyar T. E., Takizawa K., Moorman C., et al. Space-time finite element computation of complex fluid-structure interactions // International Journal for Numerical Methods in Fluids. — 2010. — Vol. 64, no. 10–12. — P. 1201– 1218. — https://doi.org/10.1002/fld.2221.
37. Thomas P. D. and Lombard C. K. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids // AIAA Journal. — 1979. — Vol. 17, no. 10. — P. 1030–1037. — https://doi.org/10.2514/3.61273.
38. Tuković Ž. and Jasak H. A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow // Computers & Fluids. — 2012. — Vol. 55. — P. 70–84. — https://doi.org/10.1016/j.compfluid.2011.11.003.
39. Tuković Ž., Karač A., Cardiff P., et al. OpenFOAM Finite Volume Solver for Fluid-Solid Interaction // Transactions of FAMENA. — 2018. — Vol. 42, no. 3. — P. 1–31. — https://doi.org/10.21278/tof.42301.
40. Vodeneeva E., Pichugina Yu., Zhurova D., et al. Epiplastic Algal Communities on Different Types of Polymers in Freshwater Bodies: A Short-Term Experiment in Karst Lakes // Water. — 2024. — Vol. 16, no. 22. — P. 3288. — https://doi.org/10.3390/w16223288.
41. Widlund O. Iterative substructuring methods: algorithms and theory for elliptic problems in the plane // First International Symposium on Domain Decomposition Methods for Partial Differential Equations. — Paris, France : SIAM, 1988. — P. 113–128.



