Lithospheric Thickness in Northeastern Eurasia
Аннотация и ключевые слова
Аннотация (русский):
We constrain lithospheric thickness across northeastern Eurasia using a new thermo-compositional model that jointly interprets seismic tomography and gravity data, including gravity gradients from the GOCE mission. This integrative approach provides a self-consistent threedimensional thermal structure of the lithosphere that incorporates compositional variations within lithospheric keels, yielding robust thickness estimates. The results demonstrate a strong link between lithospheric thickness and tectonic evolution. Archean and Proterozoic terranes such as the Siberian Craton and the eastern Fennoscandian Shield preserve thick keels (>200 km), reflecting early stabilization through melt depletion (and the interactions with mantle plumes and rifting episodes for the Siberian Craton), while the Timan–Pechora block also retains anomalously thick lithosphere, consistent with Paleozoic orogenic reworking and stabilization. The northeastern Barents Sea displays intermediate lithosphere (160 km to 180 km), likely representing a Proterozoic–Paleozoic fragment within the Arctic basement mosaic. In contrast, the Ural Orogen forms a sharp lithospheric boundary between the East European Craton and the thermally modified West Siberian Plate, which was profoundly affected by Mesozoic rifting and plume activity. East of the Verkhoyansk Range, lithospheric thickness decreases to less than 100 km in Phanerozoic terranes such as Chukotka, the Anadyr–Koryak Fold Belt, and Kamchatka, where subduction, terrane accretion, and arc magmatism maintain a hot, dynamic lithosphere. Overall, the lithospheric structure of northern Eurasia reflects the interplay of four fundamental processes: Archean craton stabilization, Paleozoic orogenesis, Mesozoic plume–rift modification, and ongoing Pacific subduction. These processes collectively shape the strong lateral contrasts that define the geodynamic framework of Eurasia

Ключевые слова:
Northeastern Eurasia, lithospheric thickness, thermal model
Список литературы

1. Artemieva, I. M. 2006. “Global 1º×1º thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution.” Tectonophysics 416 (1–4): 245–77. https://doi.org/10.1016/j.tecto.2005.11.022.

2. Artemieva, I. M. 2011. The Lithosphere: An Interdisciplinary Approach. Cambridge University Press. https://doi.org/10.1017/cbo9780511975417.

3. Artemieva, I. M., and W. D. Mooney. 2001. “Thermal thickness and evolution of Precambrian lithosphere: A global study.” Journal of Geophysical Research: Solid Earth 106 (B8): 16387–414. https://doi.org/10.1029/2000jb900439.

4. Ashchepkov, I. V., N. V. Vladykin, T. Ntaflos, et al. 2013. “Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons.” Gondwana Research 23 (1): 4–24. https://doi.org/10.1016/j.gr.2012.03.009.

5. Boumann, J., J. Ebbing, M. Fuchs, et al. 2016. “Satellite gravity gradient grids for geophysics.” Scientific Reports 6 (1). https://doi.org/10.1038/srep21050.

6. Chen, L., W. Tao, L. Zhao, and T. Zheng. 2008. “Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton.” Earth and Planetary Science Letters 267 (1–2): 56–68. https://doi.org/10.1016/j.epsl.2007.11.024.

7. Cherepanova, Y., and I. M. Artemieva. 2015. “Density heterogeneity of the cratonic lithosphere: A case study of the Siberian Craton.” Gondwana Research 28 (4): 1344–60. https://doi.org/10.1016/j.gr.2014.10.002.

8. Drachev, S. S. 2016. “Fold belts and sedimentary basins of the Eurasian Arctic.” Arktos 2 (1). https://doi.org/10.1007/s41063-015-0014-8.

9. Dymshits, A. M., I. S. Sharygin, V. G. Malkovets, et al. 2020. “Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields.” Minerals 10 (6): 549. https://doi.org/10.3390/min10060549.

10. Griffin, W. L., C. G. Ryan, F. V. Kaminsky, et al. 1999. “The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton.” Tectonophysics 310 (1–4): 1–35. https://doi.org/10.1016/s0040-1951(99)00156-0.

11. Haeger, C., A. G. Petrunin, and M. K. Kaban. 2022. “Geothermal Heat Flow and Thermal Structure of the Antarctic Lithosphere.” Geochemistry, Geophysics, Geosystems 23 (10). https://doi.org/10.1029/2022gc010501.

12. Kaban, M. K., W. D. Mooney, and A. G. Petrunin. 2015. “Cratonic root beneath North America shifted by basal drag from the convecting mantle.” Nature Geoscience 8 (10): 797–800. https://doi.org/10.1038/ngeo2525.

13. Kaban, M. K., R. V. Sidorov, A. A. Soloviev, et al. 2022. “A New Moho Map for North-Eastern Eurasia Based on the Analysis of Various Geophysical Data.” Pure and Applied Geophysics 179 (11): 3903–16. https://doi.org/10.1007/s00024-021-02925-6.

14. Kaban, M. K., R. V. Sidorov, M. Tesauro, et al. 2025. “An integrative model of the lithosphere of Northeastern Eurasia.” IAGA / IASPEI Joint Scientific Meeting 2025.

15. Kaban, M. K., M. Tesauro, W. D. Mooney, and S. A. Cloetingh. 2014. Geochemistry, Geophysics, Geosystems 15 (12): 4781–807. https://doi.org/10.1002/2014gc005483.

16. Koulakov, I., and N. Bushenkova. 2010. “Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times.” Tectonophysics 486 (1–4): 81–100. https://doi.org/10.1016/j.tecto.2010.02.011.

17. Kuskov, O. L., V. A. Kronrod, and A. A. Prokof’ev. 2011. “Thermal structure and thickness of the lithospheric mantle underlying the Siberian Craton from the kraton and kimberlit superlong seismic profiles.” Izvestiya, Physics of the Solid Earth 47 (3): 155–75. https://doi.org/10.1134/S1069351310111011.

18. Lebedev, S., and R. D. Van Der Hilst. 2008. “Global upper-mantle tomography with the automated multimode inversion of surface andS-wave forms.” Geophysical Journal International 173 (2): 505–18. https://doi.org/10.1111/j.1365-246x.2008.03721.x.

19. Ma, J., H. P. Bunge, A. Fichtner, S. J. Chang, and Y. Tian. 2023. “Structure and Dynamics of Lithosphere and Asthenosphere in Asia: A Seismological Perspective.” Geophysical Research Letters 50 (7): e2022GL101704. https://doi.org/10.1029/2022gl101704.

20. Pasyanos, M. E., T. G. Masters, G. Laske, and Z. Ma. 2014. “LITHO1.0: An updated crust and lithospheric model of the Earth.” Journal of Geophysical Research: Solid Earth 119 (3): 2153–73. https://doi.org/10.1002/2013jb010626.

21. Petrunin, A. G., M. K. Kaban, I. Rogozhina, and V. Trubitsyn. 2013. “Revising the spectral method as applied to modeling mantle dynamics.” Geochemistry, Geophysics, Geosystems 14 (9): 3691–702. https://doi.org/10.1002/ggge.20226.

22. Rosen, O. M. 2002. “Siberian craton – a fragment of a Paleoproterozoic supercontinent.” Russian Journal of Earth Sciences 4 (2): TJE02090. https://doi.org/10.2205/2002ES000090.

23. Skuzovatov, S., V. S. Shatsky, A. L. Ragozin, and A. P. Smelov. 2022. “The evolution of refertilized lithospheric mantle beneath the northeastern Siberian craton: Links between mantle metasomatism, thermal state and diamond potential.” Geoscience Frontiers 13 (6): 101455. https://doi.org/10.1016/j.gsf.2022.101455.

24. Tesauro, M., M. K. Kaban, W. D. Mooney, and S. A. P. L. Cloetingh. 2014. “Density, temperature, and composition of the North American lithosphere – New insights from a joint analysis of seismic, gravity, and mineral physics data: 2. Thermal and compositional model of the upper mantle.” Geochemistry, Geophysics, Geosystems 15 (12): 4808–30. https://doi.org/10.1002/2014gc005484.


Войти или Создать
* Забыли пароль?